4.6 Article

Dual-Wavelength Detection of Rotational Diffusion of Single Anisotropic Nanocarriers on Live Cell Membranes

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 116, 期 4, 页码 2766-2771

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp210423a

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory
  2. U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]

向作者/读者索取更多资源

Single-particle rotational tracking is of great importance to monitor orientation changes of biomolecules and to understand their functions and mechanisms in biological systems. Differential interference contrast (DIC) microscopy has been found to be an excellent tool to measure polarization anisotropy for tracking rotational dynamics of gold nanorod (AuNR) probes. DIC polarization anisotropy can be conveniently obtained from the bright and dark intensities of a single DIC image of an AuNR. Here, DIC microscopy-based dual-wavelength detection of rotational motions of AuNRs at both transverse and longitudinal surface plasmon resonance (SPR) wavelengths is demonstrated. The transverse SPR mode was successfully used to track fast rotational dynamics of individual AuNRs on live cell membranes. This is important since the transverse SPR mode is mostly insensitive to the medium refractive index, AuNR aspect ratio, and adsorption of biomolecules. DIC polarization anisotropy was simultaneously obtained from the two SPR wavelengths during the dynamic process. wavelengths showed good agreement and provided accurate and reliable measurement of AuNR orientation. Both

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据