4.7 Article

Phase transitions in optimal search times: How random walkers should combine resetting and flight scales

期刊

PHYSICAL REVIEW E
卷 92, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.92.062115

关键词

-

资金

  1. Ministerio de Economia y Competitividad (MINECO) [FIS 2012-32334]
  2. Generalitat de Catalunya [SGR 2013-00923]

向作者/读者索取更多资源

Recent works have explored the properties of Levy flights with resetting in one-dimensional domains and have reported the existence of phase transitions in the phase space of parameters which minimizes the mean first passage time (MFPT) through the origin [L. Kusmierz et al., Phys. Rev. Lett. 113, 220602 (2014)]. Here, we show how actually an interesting dynamics, including also phase transitions for the minimization of the MFPT, can also be obtained without invoking the use of Levy statistics but for the simpler case of random walks with exponentially distributed flights of constant speed. We explore this dynamics both in the case of finite and infinite domains, and for different implementations of the resetting mechanism to show that different ways to introduce resetting consistently lead to a quite similar dynamics. The use of exponential flights has the strong advantage that exact solutions can be obtained easily for the MFPT through the origin, so a complete analytical characterization of the system dynamics can be provided. Furthermore, we discuss in detail how the phase transitions observed in random walks with resetting are closely related to several ideas recurrently used in the field of random search theory, in particular, to other mechanisms proposed to understand random search in space as mortal random walks or multiscale random walks. As a whole, we corroborate that one of the essential ingredients behind MFPT minimization lies in the combination of multiple movement scales (regardless of their specific origin).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据