4.6 Article

Modeling Surface Passivation of ZnS Quantum Dots

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 116, 期 4, 页码 2740-2750

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp209863p

关键词

-

资金

  1. Eusko Jaurlaritza (SAIOTEK) [SA-2010/0005]
  2. Spanish Office for Scientific Research
  3. Spanish Ministry of Education
  4. Spanish Ministry of Science and Innovation

向作者/读者索取更多资源

We report on the interaction between ZnS quantum dots and several surface ligands by means of pure Quantum Mechanical (QM) and hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) methods. To shed light on the nature of the interaction, we focus our discussion on the structural and energetic aspects. The Zn6S6 cluster has been chosen to model the quantum dot core, while trimethylamine (NMe3), trimethylphosphine (PMe3), trymethylphosphine oxide (OPMe3), methanol (MeOH), methanethiol (MeSH), and methaneselenol (MeSeH) have been employed to model the passivating ligands. Our results concerning the interaction between the cluster and one ligand of each type reveal that NMe3, PMe3, and OPMe3 show a significantly greater affinity to Zn6S6 than Me OH, MeSH, and MeSeH. We noticed that the softer the heteroatom of the ligand bonded to the cluster, the greater the interaction energy. A comparative study of different amines shows that the interaction is strengthened with the number and the length of the alkyl substituents in the ligand. We demonstrated that the interaction is mainly electrostatic, even if an important polarization of the charge density is observed. Fully passivated complexes have also been investigated, and our calculations point out that the bond is weaker than in the complexes with a single bonded ligand, suggesting that the repulsive interactions between the ligands and the diminished charge acceptor capacity of the cluster come into play.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据