4.6 Article

Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 115, 期 15, 页码 7355-7363

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp200953k

关键词

-

资金

  1. National Natural Science Foundation of China [20877061, 51072154]
  2. Natural Science Foundation of Hubei Province [2010CDA078]
  3. National Basic Research Program of China [2007CB613302]

向作者/读者索取更多资源

Graphene and graphitic carbon nitride (g-C3N4) composite photocatalysts were prepared by a combined impregnation-chemical reduction strategy involving polymerization of melamine in the presence of graphene oxide (precursors) and hydrazine hydrate (reducing agent), followed by thermal treatment at 550 degrees C under flowing nitrogen. The resulting, graphene/g-C3N4 composite photocatalysts were characterized by X-ray diffraction, transmission electron microscopy, UV-visible spectrophotometry, nitrogen adsorption, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and photoluminescence spectroscopy. The transient photocurrent response was measured for several on-off cycles of intermittent irradiation. The effect of graphene content on the rate of visible-light photocatalytic hydrogen production was studied for a series of graphene-graphitic carbon nitride composite samples containing Pt as a cocatalyst in methanol aqueous solutions. This study shows that graphene sheets act as electronic conductive channels to efficiently separate the photogenerated charge carriers and, consequently, to enhance the visible-light photocatalytic H-2-production activity of g-C3N4. The optimal graphene content was determined to be similar to 1.0 wt %, and the corresponding H-2-production rate was 451 mu mol h(-1) g(-1), which exceeded that of pure g-C3N4 by more than 3.07 times. The proposed mechanism for the enhanced visible-light photocatalytic activity of g-C3N4 modified by a 5 mall amount of graphene was further confirmed by photoluminescence spectroscopy and transient photocurrent response. The metal-free graphene/g-C3N4 composites showed high visible-light photocatalytic activity, which makes them promising nanomaterials for further applications in water treatment and dye-sensitized solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据