4.6 Article

Superconvergent Representation of the Gersten-Nitzan and Ford-Weber Nonradiative Rates

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 115, 期 40, 页码 19546-19556

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp2057833

关键词

-

向作者/读者索取更多资源

An alternative representation of the quasistatic nonradiative rates of Gersten and Nitzan [J. Chem. Phys. 1981, 75, 1139] and Ford and Weber [Phys. Rep. 1984, 113, 195] is derived for the respective parallel and perpendicular dipole orientations. Given the distance d of a dipole from a sphere surface of radius a, the representations comprise four elementary analytic functions and a modified multi-pole series taking into account residual multipole contributions. The analytic functions could be arranged hierarchically according to decreasing singularity at the short distance limit d -> 0, ranging from d(-3) over d(-1) to ln(d/a). The alternative representations exhibit drastically improved convergence properties. On keeping mere residual dipole contribution of the modified multipole series, the representations agree with the converged rates on at least 99.9% for all distances, arbitrary particle sizes and emission wavelengths, and for a broad range of dielectric constants. The analytic terms of the representations reveal a complex distance dependence and could be used to interpolate between the familiar d(-3) short-distance and d(-6) long-distance behaviors with an unprecedented accuracy. Therefore, the representations could be especially useful for the qualitative and quantitative understanding of the distance behavior of nonradiative rates of fluorophores and semiconductor quantum dots involving nanometal surface energy transfer in the presence of metallic nanoparticles or nanoantennas. As a byproduct, a complete short-distance asymptotic of the quasistatic nonradiative rates is derived. The above results for the nonradiative rates translate straightforwardly to the so-called image enhancement factors Delta, which are of relevance for the surface-enhanced Raman scattering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据