4.6 Article

29Si NMR and UV-Raman Investigation of Initial Oligomerization Reaction Pathways in Acid-Catalyzed Silica Sol-Gel Chemistry

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 115, 期 9, 页码 3562-3571

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp109901v

关键词

-

资金

  1. Research Foundation Flanders (FWO)
  2. Research Board of Ghent University (BOF)
  3. BELSPO [IAP-PAI P6/27]
  4. Flemish Government
  5. Belgian Prodex office
  6. ESA

向作者/读者索取更多资源

The initial molecular steps of the acid-catalyzed silica sol-gel process departing from tetraethylorthosilicate (TEOS) were investigated by in situ Si-29 NMR and UV-Raman spectroscopy. The use of a substoichiometric H2O:TEOS molar ratio (r-value 0.2-1.2) slowed the silicate oligomerization reaction and allowed unraveling the initial steps of silica condensation. Molecular modeling confirmed Raman signal and Si-29 NMR shift assignment. A comprehensive listing of all Raman and Si-29 NMR assignments is provided, including unique Raman assignments of cyclosilicates and the linear tetramer. The combination of experiment and modeling allowed an analysis of the reaction kinetics. The derived kinetic model and the experimental observation both revealed that the H2O:TEOS molar ratio had a strong influence on the reaction kinetics but not on the reaction pathways. The multianalytical approach led to development of an oligomerization scheme. As dominant oligomerizations, chain growth, cyclodimerization, and branching were identified. Under the investigated conditions, chains did not grow longer than pentamer, and ring sizes were limited to 6-rings. Chains of 4 Si atoms and 4-rings were abundant species. Branched rings and chains were formed by attachment of dimers and trimers. Gelation proceeded from branched 4-rings and branched chains with limited hydroxyl functionalities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据