4.6 Article

Electromagnetic Field Shielding Polyurethane Nanocomposites Reinforced with Core-Shell Fe-Silica Nanoparticles

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 115, 期 31, 页码 15304-15310

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp2052536

关键词

-

资金

  1. National Science Foundation - Nanoscale Interdisciplinary Research Team and Materials Processing and Manufacturing [CMMI 10-30755]
  2. NSF [DMR 10-05764]

向作者/读者索取更多资源

A modified Stober method is introduced to synthesize Fe@SiO2 nanoparticles (NPs) using 3-aminopropyltriethoxysilane (APTES) as a primer to render the metal particle surface compatible with silica. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) results indicate a highly crystalline iron core coated with a uniform layer of silica. Polyurethane (PU) nanocomposites filled with 71 wt % Fe@FeO and 71 wt 96 Fe@SiO2 NPs are fabricated via a surface-initiated polymerization (SIP) method. The significantly increased coercivity of the resulting nanocomposites than that of the pure Fe@FeO NPs indicates that the NPs become magnetically harder after being dispersed in the PU matrix. Both Fe@SiO2 NPs and Fe@SiO2/PU nanocomposites exhibit better thermal stability and antioxidation capability than Fe@FeO and Fe@FeO/PU, respectively, owing to the barrier effect of the silica shell, revealed by the thermalgravimetric analysis (TGA). Meanwhile, the silica shell greatly reduces the eddy current loss and increases the anisotropy energy, which is essentially important to acquire higher reflection loss and broader absorption bandwidth for the microwave absorption. The Fe@SiO2/PU nanocomposites show good electromagnetic wave absorption performance (reflection loss, RL < -20 dB) at high frequencies (11.3 GHz), while the best RL of Fe@FeO/PU is still larger than -20 dB even with a larger absorber thickness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据