4.6 Article

Hydroxylation Structure and Proton Transfer Reactivity at the Zinc Oxide-Water Interface

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 115, 期 17, 页码 8573-8579

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp106144p

关键词

-

资金

  1. Swedish Research Council (VR)
  2. NSF [DMR 0427177]

向作者/读者索取更多资源

The hydroxylation structural features of the first adsorption layer and its connection to proton transfer reactivity have been studied for the ZnO-liquid water interface at room temperature. Molecular dynamics simulations employing the ReaxFF forcefield were performed for water on seven ZnO surfaces with varying step concentrations. At higher water coverage a higher level of hydroxylation was found, in agreement with previous experimental results. We have also calculated the free energy barrier for transferring a proton to the surface, showing that stepped surfaces stabilize the hydroxylated state and decrease the water dissociation barrier. On highly stepped surfaces the barrier is only 2 kJ/mol or smaller. Outside the first adsorption layer no dissociation events were found during almost 100 ns of simulation time; this indicates that these reactions are much more likely if catalyzed by the metal oxide surface. Also, when exposed to a vacuum, the less stepped surfaces stabilize adsorption beyond monolayer coverage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据