4.6 Article

Catalytic Aerobic Oxidation of Renewable Furfural with Phosphomolybdic Acid Catalyst: an Alternative Route to Maleic Acid

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 115, 期 35, 页码 17516-17522

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp2054712

关键词

-

资金

  1. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry,

向作者/读者索取更多资源

Developing new technologies to obtain chemicals from biomass in place of the fossil feedstock have attracted attention in academic and industrial communities. In this work, using renewable furfural as the feedstock, catalytic aerobic oxidation of furfural to maleic acid was investigated with phosphomolybdic acid catalyst in the aqueous/organic biphase system. The oxidation happens in the aqueous phase, and the organic phase serves as the reservoir to release the substrate gradually through phase equilibrium. Under the optimized conditions, 34.5% yield of maleic acid could be obtained with 68.6% of selectivity, and the conversion of furfural is 50.4%. Because furfural and maleic acid dominantly exist in two different phases, the product separation and reactant recycle would be very simple in its potential application. The FT-IR. and P-31 NMR technologies were applied to characterize the phosphomolybdic acid catalyst, and the pathway of maleic acid formation was also discussed based on obtained mechanistic information. This work demonstrates an alternative, renewable route to maleic acid, and the mechanistic information from this study also provides clues to improve the catalyst for efficient oxidation of furfural to maleic acid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据