4.6 Article

Hydroxyls-Involved Interfacial CO Oxidation Catalyzed by FeOx(111) Monolayer Islands Supported on Pt(111) and the Unique Role of Oxygen Vacancy

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 115, 期 29, 页码 14290-14299

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp204106u

关键词

-

资金

  1. National Natural Science Foundation of China [20973161, 11079033]
  2. Chinese Academy of Sciences
  3. National Basic Research Program of China [2010CB923302]
  4. Fundamental Research Funds for the Central Universities
  5. MPG-CAS partner group program

向作者/读者索取更多资源

We have comprehensively investigated the reactivity of hydroxyls on FeOx(111) monolayer islands with different amounts of oxygen vacancy concentrations grown on Pt(111) by means of X-ray photoelectron spectroscopy, temperature-programmed desorption/reaction spectroscopy, and low energy electron diffraction. Hydroxyls on FeOx(111) monolayer islands are capable of oxidizing CO(a) on Pt(111) at the FeOx(111)-Pt(111) interface at low temperatures and such an interfacial oxidation of CO by hydroxyls to produce CO2 is not suppressed by either excess CO(a) or excess H(a) on FeOx(111)/Pt(111) inverse model catalyst surface. However, the reactivity of hydroxyls is controlled by the oxygen vacancy concentration in FeOx(111) monolayer islands. With the increase of oxygen vacancy concentration, reaction pathways of hydroxyls on FeOx(111) monolayer islands to produce H2O are thermodynamically suppressed, which thus opens other hydroxyls-involved reaction pathways including the interfacial oxidation of CO to produce CO2. These results greatly deepen the fundamental understanding of the reaction mechanism and catalytically active structure for low temperature WGS and PROX reactions catalyzed by oxide supported Pt nanocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据