4.6 Article

Sensitivity Analysis of Cluster Models for Calculating Adsorption Energies for Organic Molecules on Mineral Surfaces

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 115, 期 20, 页码 10044-10055

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp1121189

关键词

-

资金

  1. Danish Center for Scientific Computing (DCSC)
  2. Danish National Advanced Technology Foundation (HTF)
  3. Maersk Oil and Gas A/S

向作者/读者索取更多资源

We calculated the adsorption energy for ethanol on the magnesite {10.4} surface using density functional theory (DFT) and cluster models for the mineral surface, and we quantified the errors introduced by using a finite size cluster, freezing various parts of the mineral cluster during geometry optimization and for altering the edges of the cluster. We also investigated how the adsorption energy changes for increasingly accurate density functionals, PBE, BLYP, B3LYP, and B2PLYP, also when supplemented with empirical dispersion (-D). We concluded that calculations with clusters large enough to include the surface atoms and groups binding to the adsorbate and their nearest-neighbor ions provide accurate adsorption energies, typically for MgCO3-ethanol systems, which is about 60 atoms. Using B3LYP-D and a finite size cluster of 80 atoms, we found that the adsorption energy was underestimated by 0.17 eV for adsorption from vacuum and by 0.10 eV for adsorption from solution, and we estimated a random error of 0.10 eV in adsorption energy when surface atoms were frozen during geometry optimization. The basis set superposition error leads to an overestimation of the adsorption energy of 0.08 eV, which in solution almost cancels the effects of finite size. We also compared adsorption energies for binding to magnesite clusters of ethanol, water, acetic acid, hydroxyl, and acetate from vacuum and from aqueous solution. When adsorbed from solution, using an implicit solvent model, bonding with water is stronger than for the other molecules. No adsorption of any of the other molecules was predicted. The adsorption energy for the acetate ion is considerably more uncertain than for the other molecules. We recommend B3LYP-D as a reliable and computationally effective method for calculating adsorption energies of organic molecules on mineral surfaces using cluster models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据