4.6 Article

Physisorption Structure of Water on the GaN Polar Surface: Force Field Development and Molecular Dynamics Simulations

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 115, 期 23, 页码 11684-11693

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp202606s

关键词

-

资金

  1. Academia Sinica Research Program on NanoScience and Nano Technology
  2. National Science Council of Taiwan [NSC98-2113-M-001-029-MY3]

向作者/读者索取更多资源

The adsorption mechanism of water on the GaN (0001) polar surface is investigated via both the Density Functional Theory (DFT) method and its derived classical force field. The physisorption binding energy and the adsorption geometry of the water molecule on the clean Ga-terminated surface are analyzed via the first-principle static calculations. The adsorption energy hypersurfaces are then extracted to be used in the fitting of the interaction potentials between water and GaN. Classical molecular dynamics (MD) simulations based on the developed force field are performed for the interfacial system of liquid water and the GaN surface slab. From our computations, the interfacial water exhibits significant oscillatory profiles for the atomic densities and the molecular orientations. Further data analysis suggests a highly confined first layer with the O being locked right upon the surface Ga atoms and the H pointing toward the neighboring O to form the weakened hydrogen bonds. A bilayer configuration with opposite dipole orientations is consequently characterized as the wetting structure on the GaN polar surface and is explained by the anisotropic perturbations from the surface polar sites. Our simulations would be helpful to provide an atomistic picture for the water adsorption configuration on this semiconductor surface and would be useful in the relevant nanofluidic and nanoengineering applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据