4.6 Article

Photocatalytic H2 Evolution over TiO2 Nanoparticles. The Synergistic Effect of Anatase and Rutile

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 114, 期 6, 页码 2821-2829

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp910810r

关键词

-

向作者/读者索取更多资源

Photocatalytic H-2 evolution over aqueous TiO2 suspension, with methanol as holes scavenger, is systematically studied as a function of anatase and rutile phase compositions. The highly crystalline, flame-synthesized TiO2 nanoparticles (22-36 m(2) g(-1)) were designed to contain 4-95 mol % anatase, with the remaining being rutile. Although the amount of photocurrent generated under applied potential bias increases with increasing anatase content, a different trend was observed during photocatalytic H-2 evolution in suspension form; that is, without potential bias. Here, synergistic effects in terms of H-2 evolution were observed for a wide range of anatase contents, from 13 to 79 mol %. At the optimal 39 mol % anatase, the photocatalytic activity was enhanced by more than a factor of 2 with respect to the anatase- and rutile-rich phases. The synergistic effect in these mixed anatase-rutile phases was thought to originate from the efficient charge separation across phase junctions. No synergistic effect was observed for the physically mixed anatase and rutile particles due to insufficient physical contact. Here, we also identify the formation of highly reducing hydroxymethyl radicals during the simultaneous oxidation of methanol, which efficiently inject additional electrons into the TiO2 conduction band, that is, current-doubling, for heterogeneous (instead of homogeneous) H-2 evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据