4.6 Article

Impact of Controlling the Site Distribution of Al Atoms on Catalytic Properties in Ferrierite-Type Zeolites

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 115, 期 4, 页码 1096-1102

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp106247g

关键词

-

资金

  1. British Petroleum
  2. Fundacion Ramon Areces Postdoctoral Research Fellowship

向作者/读者索取更多资源

Zeolites with the ferrierite (FER) topology are synthesized using a combination of tetramethylammonium (TMA) cations with differently sized cyclic amines (pyrrolidine (Pyr), hexamethyleneimine (HMI), and 1,4-diazabicyclo[2.2.2]octane (DAB)). Using these organic structure-directing agents (SDAs), low Si/Al ratios and concentrated synthesis mixtures favor the crystallization of FER materials. Increasing the size of the cyclic amine or decreasing the aluminum content leads to the crystallization of other phases or the creation of excessive amounts of connectivity defects. TMA cations play a decisive role in the synthesis of the FER materials, and their presence allows the use of HMI to synthesize FER. Proton MAS NMR is used to quantify the accessibility of pyridine to acid sites in these PER samples, where it is found that the FER + HMI + TMA sample contains only 27% acid sites in the 8-MR channels, whereas FER + Pyr and FER + Pyr + TMA contain 89% and 84%, respectively. The constraint index (CI) test and the carbonylation of dimethyl ether (DME) with carbon monoxide are used as probe reactions to evaluate how changes in the aluminum distribution in these FER samples affect their catalytic behavior. Results show that the use of Pyr as an SDA results in the selective population of acid sites in the 8-MR channels, whereas the use of HMI generates FER zeolites with an increased concentration of acid sites in the 10-MR channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据