4.7 Article

Radiation-pressure-induced nonlinearity in microdroplets

期刊

PHYSICAL REVIEW E
卷 92, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.92.063033

关键词

-

资金

  1. National Science Foundation [CBET 1438112]

向作者/读者索取更多资源

High quality (Q) factor whispering gallery modes (WGMs) can induce nonlinear effects in liquid droplets through mechanisms such as radiation pressure, Kerr nonlinearity, and thermal effects. However, such nonlinear effects, especially those due to radiation pressure, have yet to be thoroughly investigated and compared in the literature. In this study, we present an analytical approach that can exactly calculate the droplet deformation induced by the radiation pressure. The accuracy of the analytical approach is confirmed through numerical analyses based on the boundary element method. We show that the nonlinear optofluidic effect induced by the radiation pressure is stronger than the Kerr effect and the thermal effect under a large variety of realistic conditions. Using liquids with ultralow and experimentally attainable interfacial tension, we further confirm the prediction that it may only take a few photons to produce measurable WGM resonance shift through radiation-pressure-induced droplet deformation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据