4.6 Article

Trends of Water Gas Shift Reaction on Close-Packed Transition Metal Surfaces

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 114, 期 21, 页码 9826-9834

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp1005814

关键词

-

资金

  1. National Science Council, Taiwan [NSC 98-2113-M-003-003-MY2]

向作者/读者索取更多资源

The mechanism of the water gas shift reaction (WGSR) on the close-packed transition metal surfaces of Co, Ni, Cu (from the 3d row), Rh, Pd, Ag (from the 4d row), Ir, Pt, and Au (from the 5d row) has been systematically examined by periodic density functional theory (DFT) calculations. The comparison of potential energy surface (PES) concludes that WGSR activity is influenced by two kinds of elementary steps: O-H bond dissociation and C-O bond formation. Activation barriers (Ea) and reaction energies (Delta H) on a series of metal surfaces show good BEP relationship; however, their energetic trends are opposite in these two kinds of steps. In O-H bond dissociation steps, trends of Ea and Delta H are groups 9 < 10 < 11 and 3d < 4d < 5d. On the other hand, C-O bond formation steps on the surfaces of the lower-right metals in the d block (Cu, Ag, Pt, Au) have relatively lower Ea and Delta H, which is responsible for their high WGSR activity of metal/oxide catalysts. In addition, the fundamental of energetic trends has been examined from the analyses of adsorption energy, density of state (DOS), and charge density. The result shows that the surfaces of upper-left d-block metals (Co, Ni, Rh) with higher energy and smaller delocalization of their d orbitals yield a stronger adsorption energy with higher induced charges that will stabilize dissociating fragments to lower the barrier and retard desorptions to lift the barrier in O-H bond dissociation and C-O bond formation steps, respectively. The prediction of energetic trends in the present work is also appropriate for other catalytic reactions, such as ethanol decomposition and CO oxidation, and can help us scientifically design a better catalyst for the desired reaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据