4.6 Article

Electric Field Activated Hydrogen Dissociative Adsorption to Nitrogen-Doped Graphene

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 114, 期 34, 页码 14503-14509

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp103835k

关键词

-

资金

  1. Flemish Science Foundation (FWO-VI)
  2. Belgian Science Policy (IAP)

向作者/读者索取更多资源

Graphane, hydrogenated graphene, was very recently synthesized and predicted to have great potential applications. In this work, we propose a new promising approach for hydrogenation of graphene based on density functional theory (DFT) calculations through the application of a perpendicular electric field after substitutionally doping by nitrogen atoms. These DFT calculations show that the doping by nitrogen atoms into the graphene layer and applying an electrical field normal to the graphene surface induce dissociative adsorption of hydrogen. The dissociative adsorption energy barrier of an H-2 molecule on a pristine graphene layer changes from 2.7 to 2.5 eV on N-doped graphene, and to 0.88 eV on N-doped graphene under an electric field of 0.005 au. When increasing the electric field above 0.01 au, the reaction barrier disappears. Therefore, N doping and applying an electric field have catalytic effects on the hydrogenation of graphene, which can be used for hydrogen storage purposes and nanoelectronic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据