4.7 Article

Unbiased charge oscillations in B-DNA: Monomer polymers and dimer polymers

期刊

PHYSICAL REVIEW E
卷 92, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.92.032725

关键词

-

资金

  1. State Scholarships Foundation-IKY

向作者/读者索取更多资源

We call monomer a B-DNA base pair and examine, analytically and numerically, electron or hole oscillations in monomer and dimer polymers, i.e., periodic sequences with repetition unit made of one or two monomers. We employ a tight-binding (TB) approach at the base-pair level to readily determine the spatiotemporal evolution of a single extra carrier along a N base-pair B-DNA segment. We study highest occupied molecular orbital and lowest unoccupied molecular orbital eigenspectra as well as the mean over time probabilities to find the carrier at a particular monomer. We use the pure mean transfer rate k to evaluate the easiness of charge transfer. The inverse decay length beta for exponential fits k(d), where d is the charge transfer distance, and the exponent. for power-law fits k(N) are computed; generally power-law fits are better. We illustrate that increasing the number of different parameters involved in the TB description, the fall of k(d) or k(N) becomes steeper and show the range covered by beta and eta. Finally, for both the time-independent and the time-dependent problems, we analyze the palindromicity and the degree of eigenspectrum dependence of the probabilities to find the carrier at a particular monomer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据