4.6 Article

Silicon-Based Blue Phosphorescence Host Materials: Structure and Photophysical Property Relationship on Methyl/Phenylsilanes Adorned with 4-(N-Carbazolyl)phenyl Groups and Optimization of Their Electroluminescence by Peripheral 4-(N-Carbazolyl)phenyl Numbers

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 113, 期 45, 页码 19686-19693

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp907104j

关键词

-

资金

  1. National Research Foundation of Korea (NRF)
  2. Korea government (MEST) [2009-0083181]
  3. Strategic Technology Development Project from the Ministry of Knowledge Economy of Korea and LG Chem., Ltd

向作者/读者索取更多资源

Wide-band-gap phosphorescent organic light-emitting diode (OLED) host materials were developed employing the tetrahedral structural motif of the silicon atom, which functioned further to connect the 4-(N-carbazolyl)phenyl (CP) units in its periphery (2a-2d), The thermal, photophysical, and electrochemical properties, and X-ray structural studies as well as OLED device characteristics were fully investigated. Silicon effectively disconnected the charge delocalization between the CP units. By low temperature PL study, the triplet energy was measured to be around 3.0 eV for all prepared host materials. The thermal stability correlated well with the number of CP units adorned at the silicon atom, showing a gradual increase in T-g values of 99-214 degrees C as the number of CP units increased in the 2a-d series. Further structural modification was carried out with the phenylsilane series (3a-c). Hole mobility measurements for the silicon-tuned host materials of the methyl and phenyl series, 2b-c and 3b-c showed mobility values in the range of 2.7-6.5 x 10(-4) cm(2)/(V s). A series of OLED device fabrication was attempted with these two series. The best performance was obtained with 2b exhibiting external quantum and power efficiencies of 12.1% and 13.6 1m/W with CIE x and y coordinates of 0.15 and 0.28, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据