4.6 Article

Photophysical Properties of Dye-Doped Silica Nanoparticles Bearing Different Types of Dye-Silica Interactions

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 113, 期 36, 页码 15974-15981

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp905812f

关键词

-

资金

  1. CBRN Research and Technology Initiative (CRTI) [03-0005RD, 06-0187TD]
  2. Natural Sciences and Engineering Research Council of Canada
  3. Fonds de la recherche sur la nature et les technologies

向作者/读者索取更多资源

Photophysical properties of three types of dye-doped silica nanoparticles (NTs) with different dye-silica interactions have been investigated. In two cases the dye-silica interactions are noncovalent, where tris(2,2'-bipyridine)ruthenium(II) chloride (Rubpy) is attracted to the silica network electrostatically and tetramethylrhodamine-dextran (TMR-Dex) is trapped inside the silica matrix through spatial/steric hindrance. In the third case, tetramethylrhodamine-5-isothiocyanate (TRITC) modified with 3-aminopropyltriethoxysilane (APTES) to form TMR-APTES is bound to the silica matrix covalently. Although in all three types of architectures absorption, excitation, and emission spectra show only small red-shifts (<5 nm) as compared with free dye in water, excited state emission lifetimes, quantum yields, and anisotropies vary significantly and in quite different ways between the three architectures. All three types of interactions facilitate effective encapsulation of dye within a silica network. However, covalent bonding possesses a notable advantage over the other two types of interactions as it results in a large reduction of a nonradiative relaxation rate of the embedded dye (TMR-APTES) and, thus, a large (similar to 3.55-fold) increase of its quantum yield.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据