4.6 Article

Energetic and Electronic Structure Analysis of Intrinsic Defects in SnO2

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 113, 期 1, 页码 439-448

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp807753t

关键词

-

资金

  1. Science Foundation Ireland [06/IN. 1/192]
  2. IRCSET

向作者/读者索取更多资源

Empirically, intrinsic defects in SnO2 are known to give rise to a net oxygen substoichiometry and n-type conductivity; however, the atomistic nature of the defects is unclear. Through first-principles density functional theory calculations, we present detailed analysis of both the formation energies and electronic properties of the most probable isolated defects and their clustered pairs. While stoichiometric Frenkel and Schottky defects are found to have a high energetic cost, oxygen vacancies, compensated through Sn reduction, are predicted to be the most abundant intrinsic defect under oxygen-poor conditions. These are likely to lead to conductivity through the mobility of electrons from Sn(II) to Sn(IV) sites. The formation of Sn interstitials is found to be higher in energy, under all charge states and chemical environments. Although oxygen interstitials have low formation energies under extreme oxygen-rich conditions, they relax to form peroxide ions (O-2(2-)) with no possible mechanism for p-type conductivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据