4.6 Review

Isomerization and hydrogenation of cis-2-butene on Pd model catalyst

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 112, 期 30, 页码 11408-11420

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp800205j

关键词

-

资金

  1. Division Of Chemistry
  2. Direct For Mathematical & Physical Scien [0742414] Funding Source: National Science Foundation

向作者/读者索取更多资源

The adsorption and kinetics of conversion of cis-2-butene with deuterium on model supported Pd catalyst (Pd/Fe3O4/Pt(111)) were characterized by reflection-absorption infrared spectroscopy (RAIRS), temperature-programmed desorption (TPD), and isothermal molecular beam (MB) experiments. It was found that selectivity toward cis-trans isomerization and hydrogenation depends critically on the nature of the carbonaceous deposits, which are typically present during reaction on real catalysts. At low temperatures (190-210 K) both reaction pathways were found to proceed on the initially clean surface, but the catalytic activity was observed to quickly vanish, presumably because of the accumulation of hydrocarbon species on the surface. At temperatures above 250 K, on the other hand, a sustained catalytic activity toward cis-trans isomerization was observed over long periods of time. Interestingly, no catalytic activity could be sustained for the competing hydrogenation on the initially clean catalyst even at these temperatures. Only when highly dehydrogenated carbonaceous fragments were preadsorbed on the surface was it possible to induce a persistent catalytic activity for the hydrogenation (and also the isomerization) of the alkene on our supported palladium particles. Possible reasons of this unique vacuum catalytic behavior are discussed, including different spatial requirements for the competing reaction pathways and changes in the adsorption state of deuterium on and beneath the surface modified by the carbonaceous deposits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据