4.6 Article

Role of Surface/Interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO-TiO2 Nanocomposites

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 112, 期 48, 页码 19040-19044

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp8068392

关键词

-

资金

  1. U.S. Department of Energy [DE-FG02-03ER15457/A003, DE-AC0206CH11357]

向作者/读者索取更多资源

Coupled CuO-TiO2 nanocomposite photocatalysts were prepared by a deposition precipitation method and were characterized with a variety of techniques. Electron paramagnetic resonance (EPR) spectroscopy was employed to study the local structures of surface/interfacial Cu2+ sites using Cu2+ as a sensitive paramagnetic probe. The addition of bulk CuO to TiO2 led to decreased photocatalytic efficiency in the degradation of methylene blue. However, doping with a very small amount of CuO (0.1 wt % copper loading) significantly enhanced the photocatalytic activity of TiO2. EPR study of the TiO2 surface revealed the presence of both highly dispersed CuO clusters and substitutional Cu2+ sites (Ti-O-Cu linkages) at 0.1 wt % copper loading. The data suggest that the Ti-O-Cu linkages contributed to the improved photooxidative activity of the 0.1% CuO-TiO2 nanocomposite. In contrast, at higher loadings the bulk form of CuO created charge recombination centers lowering the photoactivity of the composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据