4.6 Article

Valence band alignment at cadmium selenide quantum dot and zinc oxide (10(1)over-bar0) interfaces

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 112, 期 22, 页码 8419-8423

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp7113434

关键词

-

向作者/读者索取更多资源

A key issue governing efficient electron transfer between two semiconductors is interfacial electronic energy alignment. We address this issue in a model system relevant to quantum-dot-sensitized solar cells, cadmium selenide (CdSe) quantum dots adsorbed on a single crystal zinc oxide (ZnO) (10 (1) over bar0) surface via 3-mercaptopropionic acid linkers, using ultraviolet photoelectron spectroscopy. The valence band maximum (VBM) of the CdSe quantum dots is found to be located at 1.1 +/- 0.1 eV above the VBM of ZnO, nearly independent of the size of the quantum dots (2.1-4.2 nm). This finding suggests that, upon adsorption, there is direct electronic interaction between CdSe quantum dots and the ZnO surface involving CdSe valance bands. Such electronic interaction pins the CdSe valence band to the Fermi level. As a result, varying the quantum dot size mainly tunes the alignment of the conduction band minimum of CdSe with respect to that of the ZnO surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据