4.6 Article

Surface modification of TiO2 by phosphate:: Effect on photocatalytic activity and mechanism implication

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 112, 期 15, 页码 5993-6001

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp712049c

关键词

-

向作者/读者索取更多资源

Phosphate modified TiO2 photocatalysts were prepared by phosphoric acid treatment before or after TiO2 crystallization. Substrates with different structures were chosen to explore the photocatalytic activity of as-modified TiO2 under UV irradiation. It was found that the effect of phosphate modification is definitely attributed to the surface-bound phosphate anion, and the modification by phosphate can affect both the rates and pathways of photocatalytic reactions, which are of great dependence on the structures and properties of substrates. The degradation of substrates (such as 4-chloropehenol, phenol, and rhodamine B) with weak adsorption on the pure TiO2 was markedly accelerated by phosphate modification, while substrates (such as dichloroacetic acid, alizarin red, and catechol) with strong adsorption exhibited a much lower degradation rate in the phosphate modified system. A much higher amount of hydroxyl radical was produced in phosphate modified system. All of the experimental results imply that phosphate modification largely accelerates the hydroxyl radical attack, but hinders the direct hole oxidation pathway. A common operating mechanism for the phosphate modification, which can be applicable to other inert anions, is also discussed from the viewpoint of an anion-induced negative electrostatic field in the surface layer of TiO2 and the hydrogen bond between modification anion and H2O molecule.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据