4.6 Article

Electronic excited state of alizarin dye adsorbed on TiO2 nanoparticles:: A study by electroabsorption (Stark effect) spectroscopy

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 112, 期 27, 页码 10233-10241

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp710252h

关键词

-

向作者/读者索取更多资源

Alizarin is one of the dyes extensively investigated as an example of a molecule capable of serving as a light absorber and an electron donor in model systems designed for the new type solar cells. Using the Stark effect measurements for alizarin, both free in solution and adsorbed to TiO2 nanoparticles, the question has been addressed whether the excited-state orbital of adsorbed alizarin extends into the solid and involves the orbitals of the Ti atom or remains localized within the alizarin molecule. Because an important role can be played by the electric field at the charged surface of the nanoparticles, the field was modulated by changing the pH of the medium. The results reveal a substantial dipole moment change on the electronic excitation of the alizarin-TiO2 system, vertical bar Delta mu vertical bar approximate to 10 Debye units or slightly more. The observed dependence of the absorption maximum and the measured vertical bar Delta mu vertical bar on pH were used to distinguish between Delta mu directed toward the nanoparticle surface and that corresponding to the intrinsic rearrangement of electrons within alizarin or, in reverse direction, corresponding to more- or less-complete electron transfer from alizarin onto the orbitals of Ti and adjacent atoms comprising a localized surface (or a delocalized conductive) state. The results qualitatively contradict a significant dye-to-solid charge-transfer character of the electronic transition. It is shown that they can be interpreted in a self-consistent way by considering, in a first approximation, the light absorption by alizarin monoanion subject to the electric field generated by the charged nanoparticle surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据