4.6 Review

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 112, 期 48, 页码 18737-18753

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp806791s

关键词

-

资金

  1. Office of Basic Energy Sciences of the U.S. Department of Energy

向作者/读者索取更多资源

The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal-semiconductor or Schottky junction photovoltaic cell (ii) polymer-semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future research efforts toward utilization of tailored nanostructures will be an important challenge for the development of next generation solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据