4.6 Article

Phosphonic acid modification of indium-tin oxide electrodes: Combined XPS/UPS/contact angle studies

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 112, 期 21, 页码 7809-7817

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp710893k

关键词

-

向作者/读者索取更多资源

Indium-tin oxide (ITO) electrodes have been modified with both fluorinated alkyl and aryl phosphonic acids [n-hexylphosphonic acid (HPA) and n-octadecylphosphonic acid (ODPA); 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl phosphonic acid (FHOPA), pentafluorobenzyl phosphonic acid (PFBPA), and tetrafluorobenzyl1,4-diphosphonic acid (TFBdiPA)]. These are modifiers designed to control both wetting properties toward nonpolar molecular solids and to provide a wide range of tunability in effective surface work function. The molecular nature of surface attachment and changes in electronic and wetting properties were characterized by X-ray photoelectron spectroscopy (XPS), UV-photoelectron spectroscopy (UPS), photoelastic modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and contact angle measurements using both water and hexadecane. Interface dipoles from the PA modifiers contribute to shifts in the low kinetic energy regions of UPS spectra (local vacuum level shifts, which translate into changes in effective surface work function). We show that for ITO surfaces modified with FHOPA, and to a lesser extent with PFBPA, the high work function obtained by oxygen plasma cleaning can be maintained after modification, while decreasing the polar component of surface energy. This approach to oxide surface modification is a strategy that may be beneficial for the modification of transparent conducting oxide surfaces in both organic light emitting diodes and in organic solar cells, where oxide/organic compatibility can affect device performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据