4.6 Review

Molecular electronics: Effect of external electric field

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 112, 期 38, 页码 14718-14730

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp800187e

关键词

-

资金

  1. CSIR
  2. DST
  3. AOARD, US Airforce

向作者/读者索取更多资源

The effect of electric field, applied on systems in the nanoscale regime has attracted a lot of research in recent times. We highlight some of the recent results in the field of single molecule electronics and then move on to focus on some of our own results in this area. We have first shown how important it is to obtain the spatial profile of the external bias potential across the system, and how this would change in the presence of electron-electron interactions. We have also studied different kinds of insulators in the presence of the spatially varying external bias and have explicitly shown that a two sublattice structure, caused either by a lattice distortion, or by the presence of substituents with strong dipolar nature, can result in negative differential resistance (NDR) in the transport characteristics. We also find this to be true in case of correlated insulators. Additionally, we have shown clear NDR behavior in a correlated double quantum dot by tuning the electron-electron interaction strength in the system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据