4.7 Article

Fluid infiltration pressure for hydrophobic nanochannels

期刊

PHYSICAL REVIEW E
卷 91, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.91.033022

关键词

-

资金

  1. Research Grants Council of the Hong Kong Special Administrative Region [615312, 16205714]
  2. Postgraduate Scholarship through the Energy Program at HKUST

向作者/读者索取更多资源

We investigate water infiltration pressure for hydrophobic nanochannels through molecular dynamics simulations. It is found that the entrance energy barrier significantly raises the infiltration pressure, which makes the classic Young-Laplace equation invalid for nanochannels. As the channel surface is tuned from superhydrophobic to hydrophobic, the infiltration pressure is greatly reduced mainly due to the decrease of the capillary pressure (Young-Laplace equation) caused by the contact angle change, while the contribution of the entrance energy barrier to the infiltration pressure, which is termed entrance barrier pressure, increases from 25% to 60%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据