4.6 Article

Effects of Surface Chemistry on Structure and Thermodynamics of Water Layers at Solid-Vapor Interfaces

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 113, 期 6, 页码 2128-2133

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp806815p

关键词

-

资金

  1. National Science Foundation [CMMI-0625459]

向作者/读者索取更多资源

The effects of surface chemistry on the isotherm thickness and structure of the adsorbed water layer as well as the isosteric heat of adsorption and entropy of adsorption were studied using attenuated total reflection infrared spectroscopy. The degree of hydrophilicity seems to distinctively change the structure and thermodynamic properties of the water layers adsorbed on silicon oxide surfaces. On the highly hydrophilic silicon oxide surface covered with silanol groups, the water layer adsorbed at low humidities exhibits the OH stretching peak at 3230 cm(-1) (characteristic of a solid-like water structure), and the isosteric heat of adsorption is much higher than the latent heat of ice sublimation. As the concentration of surface silanol groups decreases, both the initial isosteric heat of adsorption of water and the amount of solid-like water decrease. The water layer adsorbed on the hydrophilic surface at low humidities seems to have much lower entropies than bulk water, while the entropy of the water layer on the partially methylated surface is not much lower than that of bulk water. At high humidities, the liquid water structure becomes dominant in the adsorbed layer. The possible origins of high isosteric heat of adsorption and low entropy are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据