4.6 Article

Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 112, 期 9, 页码 3300-3307

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp710541j

关键词

-

向作者/读者索取更多资源

The protein binding propensity of nanoparticles determines their in vivo toxicity and their fate to be opsonized and cleared by human defense systems. In this work, protein-binding mechanisms of pristine and functionalized multiwalled carbon nanotubes (f-MWNTs) were investigated by varying f-MWNTs' diameters, nanotube surface chemistry, and proteins using steady-state and time-resolved fluorescence, and circular dichroism (CD) spectroscopies. The f-MWNTs with a larger diameter (similar to 40 nm) generally exhibited stronger protein binding compared to those with a smaller diameter (similar to 10 nm), demonstrating that the curvature of nanoparticles plays a key role in determining the protein binding affinity. Negative charges or steric properties on f-MWNTs enhanced binding for some proteins but not others, indicating that the electrostatic and stereochemical nature of both nanotubes and proteins govern nanotube/protein binding. Protein fluorescence lifetime was not altered by the binding while the intensity was quenched indicating a static quenching through complex formation. The binding-induced conformational changes were further confirmed by CD studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据