4.7 Article

Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters

期刊

PHYSICAL REVIEW E
卷 92, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.92.042712

关键词

-

资金

  1. NASA [NNX14AD68G]
  2. NSF [MCB-1244568, DMR-1151133]
  3. Direct For Biological Sciences
  4. Div Of Molecular and Cellular Bioscience [1244568] Funding Source: National Science Foundation
  5. Direct For Mathematical & Physical Scien
  6. Division Of Materials Research [1151133] Funding Source: National Science Foundation
  7. NASA [NNX14AD68G, 685720] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamicmicroscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10(-5). With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90 degrees. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据