4.6 Article

Electronic structure and chemistry of iron-based metal oxide nanostructured materials:: A NEXAFS investigation of BiFeO3, Bi2Fe4O9, α-Fe2O3, γ-Fe2O3, and Fe/Fe3O4

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 112, 期 28, 页码 10359-10369

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp801449p

关键词

-

向作者/读者索取更多资源

We present a systematic and detailed near edge X-ray absorption fine structure (NEXAFS) experimental investigation of the electronic structure and chemistry of iron-based metal oxide nanostructured (FeMONS) materials including BiFeO3, Bi2Fe4O9, alpha-Fe2O3, gamma-Fe2O3, and Fe/Fe3O4: Correlations of the electronic structure and structural chemistry of these intriguing nanomaterials are presented, ranging from the nano to the bulk scale. In this work, variations in the shape, position, and intensity of the O K-edge and Fe L-edge NEXAFS spectra have been analyzed in terms of electronic structure and surface chemistry of the FeMONS materials as compared with that of the bulk. We hypothesize that surface imperfection and surface strain anisotropies in nanoparticles induce distortion and site inequivalency of the oxygen O-h sites around the Fe ion located close to the surface, resulting in an increase in the degree of multiplicity as well as in nonstoichiometric effects in FeMONS materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据