4.6 Article

Theoretical Investigation of the Mechanism of the Selective Catalytic Reduction of Nitric Oxide with Ammonia on H-Form Zeolites

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 112, 期 44, 页码 17378-17387

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp806674d

关键词

-

向作者/读者索取更多资源

The selective catalytic reduction of NO with ammonia in the presence of oxygen has been investigated on a portion of the H-ZSM5 framework which contains 5T atoms by using density functional theory, representing H-form zeolites. The mechanism was subdivided into three parts: (1) the oxidation of NO to NO2, (2) the formation of an intermediate (NH2NO), and (3) the decomposition of this species to nitrogen and water. For the second step, three different pathways were studied, differing in the NOx species initially present on the active site: (i) two NO molecules form N2O2, (ii) NO2 and NO form N2O3, and (iii) two NO2 molecules form N2O4. For steps 1 and 2, the crossing of potential energy surfaces was considered for the transition of single molecules to adsorbed clusters. For all three parts of the mechanism, the energy profile of the heterogeneously catalyzed reaction is favorable, as compared to that of the corresponding homogeneous reaction. Due to the strong adsorption of ammonia on the acid site, it is likely that the rate-determining step of the overall reaction is the oxidation of NO to NO2 caused by blocking of the active site by NH3. As far as we have investigated the reaction mechanism of the selective catalytic reduction of NO with NH3 in this work, the results are in agreement with the experimental literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据