4.7 Article

Molecular dynamics analysis of the velocity slip of a water and methanol liquid mixture

期刊

PHYSICAL REVIEW E
卷 92, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.92.022402

关键词

-

资金

  1. JSPS KAKENHI [14J00811, 25420123]
  2. Grants-in-Aid for Scientific Research [15K17974, 14J00811, 25420123] Funding Source: KAKEN

向作者/读者索取更多资源

The effect of methanol mixing on a nanoscale water flow was examined by using nonequilibrium molecular dynamics simulations of a Couette-type flow between nonpolarized smooth solid surfaces. Water and methanol molecules were uniformly mixed in the bulk, whereas at the solid-liquid interface methanol molecules showed a tendency to be adsorbed on the solid surface. Similar to a macroscale Couette flow, the shear stress exerted on the solid surface was equal to the shear stress in the liquid, showing that the mechanical balance holds in nanoscale. In addition, the shear stress in the liquid bulk was equal to the viscous stress which is a product of viscosity and velocity gradient. When more methanol molecules were adsorbed on the solid surface, the friction coefficient (FC) between solid and liquid was largely reduced with a small amount of methanol and that led to a remarkable decrease of the shear stress. The cause of the FC reduction was investigated in terms of the local rotational diffusion coefficient (RDC) near the solid surface, and it was shown that different from an existing model, the FC and local RDC were not simply inversely proportional to each other in the mixture system because the solid-liquid interfacial state was more complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据