4.6 Article

Selective photocatalytic decomposition of nitrobenzene using surface modified TiO2 nanoparticles

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 112, 期 22, 页码 8311-8318

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp712137x

关键词

-

向作者/读者索取更多资源

Adsorption and photocatalytic degradation of nitrobenzene (NB) in the presence and absence of phenol (Ph) over UV-illuminated arginine-modified TiO2 Colloids have been investigated by infrared absorption, electron paramagnetic resonance spectroscopy, and X-ray absorption spectroscopy. High performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry were used for monitoring degradation conversion rates and byproduct identification. It was found that photodegradation of NB and Ph strongly depends on the nature of the TiO2 surface. Through the use of the HPLC peak area ratio before and after illumination, the photocatalytic decomposition rate of NB and Ph individually using bare TiO2 is nearly identical (1.7 and 1.5, respectively) and occurs via oxidative mechanism. Through the use of arginine-modified TiO2 nanoparticles, a three-fold increase in the NB decomposition rate is observed while no Ph decomposition is observed. Furthermore, the degradation pathway using the arginine-modified photocatalyst is completely altered to a reductive mechanism, providing a more efficient means to degrade nitrocompounds that are already in a highly oxidized state and limiting the number of byproduct. These results indicate that a critical parameter in the photocatalytic decomposition of NB and Ph is their specific adsorption and coupling to the TiO2 surface. Modification of the TiO2 particle surface with chelating agents demonstrates enhanced interaction with the desired target contaminant to impart selectivity to photocatalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据