4.7 Article

Controlling flow direction in nanochannels by electric field strength

期刊

PHYSICAL REVIEW E
卷 92, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.92.023017

关键词

-

资金

  1. Collaborative Research Fund of the Hong Kong Special Administrative Region [HKUST9/CRF/11G]
  2. Postgraduate Scholarship through the Energy Technology Concentration at HKUST

向作者/读者索取更多资源

Molecular dynamics simulations are conducted to study the flow behavior of CsF solutions in nanochannels under external electric fields E. It is found that the channel surface energy greatly affects the flow behavior. In channels of high surface energy, water molecules, on average, move in the same direction as that of the electric field regardless of the strength of E. In low surface energy channels, however, water transports in the opposite direction to the electric field at weak E and the flow direction is changed when E becomes sufficiently large. The direction change of water flow is attributed to the coupled effects of different water-ion interactions, inhomogeneous water viscosity, and ion distribution changes caused by the electric field. The flow direction change observed in this work may be employed for flow control in complex micro- or nanofluidic systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据