4.5 Article

Ion Interactions with the Air-Water Interface Using a Continuum Solvent Model

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 118, 期 29, 页码 8700-8710

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp502887e

关键词

-

资金

  1. NCI National Facility at the ANU

向作者/读者索取更多资源

Explaining and predicting the distribution of ions at the air water interface has been a central challenge of physical chemistry for nearly a century. In essence, the problem amounts to calculating the change in the solvation energy of an ion as it approaches the interface. Here, we generalize our recently developed model of ionic solvation energies to calculate this interaction. The change in the Born energy as well as the static polarization response of the ion is included by using the conductor-like screening model (COSMO), which treats the ions quantum mechanically. Approximate expressions for the dispersion repulsion, cavity attraction, and surface potential contributions are also included. This model reproduces the surface tensions of electrolyte solutions and is consistent with ab initio molecular dynamics (MD) simulation. The model provides clear physical insight into iodide's adsorption. Unlike alternative models, no parameters are deliberately adjusted to reproduce surface tensions, and all of the important contributions to the interactions are included. Solving this problem has important direct implications for atmospheric chemistry and bubble properties. It also has important indirect implications for the more complex interactions of ions with protein and mineral surfaces. These play a fundamental role in a vast number of biological and industrial processes. The model is conceptually simple and has low computational demand, which facilitates its extension to these important applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据