4.5 Article

First-Principles Many-Body Force Fields from the Gas Phase to Liquid: A Universal Approach

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 118, 期 28, 页码 8042-8053

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp501128w

关键词

-

资金

  1. Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-09ER16059]
  2. National Science Foundation [CHE-0840494]

向作者/读者索取更多资源

We extend our previously developed approach for generating physically-motivated force fields from symmetry-adapted perturbation theory by introducing explicit terms to account for nonadditive three-body exchange and dispersion interactions, yielding transferability from the gas- to condensed-phase. These Axilrod-Teller-Muto-type three-body terms require no additional parametrization and can be implemented with high computational efficiency. We demonstrate the accuracy of our force fields for a diverse set of six organic liquids/fluids, examining a wide variety of structural, thermodynamic, and dynamic properties. We find that three-body dispersion and exchange interactions make significant contributions to the internal pressure of condensed phase systems and cannot be neglected in truly ab initio force field development. These resulting force field parameters are extremely transferable over wide ranges in temperature and pressures and across chemical systems, and should be widely applicable in condensed phase simulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据