4.5 Article

Two Different Mechanisms Cooperate In The Desiccation-Induced Excited State Quenching In Parmelia Lichen

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 117, 期 38, 页码 11326-11336

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp402881f

关键词

-

资金

  1. Max-Planck-Institute for Chemical Energy Conversion, Mulheim a.d. Ruhr
  2. European Commission FP7 Marie Curie ITN network HARVEST
  3. Deutsche Forschungsgemeinschaft [HO-924/3-1]

向作者/读者索取更多资源

The highly efficient desiccation-induced quenching in the poikilohydric lichen Parmelia sulcata has been studied by ultrafast fluorescence spectroscopy at room temperature (r.t.) and cryogenic temperatures in order to elucidate the quenching mechanism(s) and kinetic reaction models. Analysis of the r.t. data by kinetic target analysis reveals that two different quenching mechanisms contribute to the protection of photosystem II (PS II). The first mechanism is a direct quenching of the PS 11 antenna and is related to the characteristic F740 nm fluorescence band. Based on the temperature dependence of its spectra and the kinetics, this mechanism is proposed to reflect the formation of a fluorescent (F740) chlorophyll-chlorophyll charge-transfer state. It is discussed in relation to a similar fluorescence band and quenching mechanism observed in light-induced nonphotochemical quenching in higher plants. The second and more efficient quenching process (providing more than 70% of the total PS II quenching) is shown to involve an efficient spillover (energy transfer) from PS II to PS I which can be prevented by a short glutaraldehyde treatment. Desiccation causes a thylakoid-membrane rearrangement which brings into direct contact the PS II and PS I units. The energy transferred to PS I in the spillover process is then quenched highly efficiently in PS I due to the formation of a long-lived P700(+) state in the dried state in the light. As a consequence, both PS II and PS I are protected very efficiently against photodestruction. This dual quenching mechanism is supported by the low temperature kinetics data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据