4.5 Article

Computational Prediction of One-Electron Reduction Potentials and Acid Dissociation Constants for Guanine Oxidation Intermediates and Products

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 117, 期 32, 页码 9518-9531

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp4062412

关键词

-

资金

  1. National Science Foundation [CHE1212281]
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [1212281] Funding Source: National Science Foundation

向作者/读者索取更多资源

Reduction potentials and pK(a) values were calculated for intermediates and products along three major pathways for guanine oxidation using the B3LYP and CBS-QB3 levels of theory with the SMD implicit solvation model. N-methylated nucleobases were used as models for nucleoside species. Ensemble averaged reduction potentials at pH 7 (E-7) were obtained by combining calculated standard reduction potentials with calculated pK(a) values in addition to accounting for tautomerization energies. Calculated pK(a) values are reasonable based on experimental estimates and chemical intuition. Pathway A leads to guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp). The first step is the oxidation of 8-oxoguanine which proceeds by the loss of an electron followed by the loss of two protons and loss of another electron, yielding 8-oxopurine. The calculated E-7 values for the remaining intermediates and products are at least 0.3 V higher than that of guanine, indicating that further oxidation of these species is unlikely. Pathway B leads to two formamidopyrimidine isomers (FAPyG and 2,5FAPyG). Species along this pathway have calculated reduction potentials that are much lower than the oxidation potential for guanine and would likely be very short-lived in an oxidatively stressed environment. Pathway C leads to reduced spiroiminodihydantoin and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih). Similar to pathway A, the calculated reduction potentials for species along this pathway are at least 0.4 V higher than that of guanine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据