4.5 Article

A Kinetic Study of Amyloid Formation: Fibril Growth and Length Distributions

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 117, 期 21, 页码 6574-6583

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp401586p

关键词

-

向作者/读者索取更多资源

We propose a kinetic model for the self-aggregation by amyloid proteins. By extending several well-known models for protein aggregation, the time evolution of aggregate concentrations containing r proteins, denoted c(r)(t), can be written in terms of generalized Smoluchowski kinetics. With this approach, we take into account all possible aggregation and fragmentation reactions involving clusters of any size. Correspondingly, an aggregate of size x + y could be formed by or break up into two smaller constituent aggregates of sizes x and y. The rates of each aggregation or fragmentation reaction, called kernels, are specified in terms of the aggregate size, and we solve c(r)(t) for large cluster sizes using numerical techniques. We show that by using Smoluchowski kinetics many pathways to fibrillation are possible and quantities, such as the aggregate length distribution at an arbitrary time, can be calculated. We show that the predicted results of the model are in agreement with the experimental observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据