4.5 Article

Carotenoid-Chlorophyll Coupling and Fluorescence Quenching Correlate with Protein Packing Density in Grana-Thylakoids

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 117, 期 38, 页码 11022-11030

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp311786g

关键词

-

资金

  1. Washington State Agricultural Research Center (ARC)
  2. National Science Foundation [MCB-1158571]
  3. United States-Israel Binational Agricultural Research and Development Fund [US-4334-10]
  4. German Science Foundation (DFG) [WA1305/3-2]
  5. National Research Foundation of Korea (NRF)
  6. Korea government (MEST)

向作者/读者索取更多资源

The regulation of light-harvesting in photosynthesis under conditions of varying solar light irradiation is essential for the survival and fitness of plants and algae. It has been proposed that rearrangements of protein distribution in the stacked grana region of thylakoid membranes connected to changes in the electronic pigment-interaction play a key role for this regulation. In particular, carotenoid-chlorophyll interactions seem to be crucial for the down-regulation of photosynthetic light-harvesting. So far, it has been difficult to determine the influence of the dense protein packing found in native photosynthetic membrane on these interactions. We investigated the changes of the electronic couplings between carotenoids and chlorophylls and the quenching in grana thylakoids of varying protein packing density by two-photon spectroscopy, conventional chlorophyll fluorometry, low-temperature fluorescence spectroscopy, and electron micrographs of freeze-fracture membranes. We observed an increasing carotenoid-chlorophyll coupling and fluorescence quenching with increasing packing density. Simultaneously, the antennas size and excitonic connectivity of Photosystem II increased with increasing quenching and carotenoid-chlorophyll coupling whereas isolated, decoupled LHCII trimers decreased. Two distinct quenching data regimes could be identified that show up at different protein packing densities. In the regime corresponding to higher protein packing densities, quenching is strongly correlated to carotenoid-chlorophyll interactions whereas in the second regime, a weak correlation is apparent with low protein packing densities. Native membranes are in the strong-coupling data regime. Consequently, PSII and LHCII in grana membranes of plants are already quenched by protein crowding. We concluded that this ensures efficient electronic connection of all pigment-protein complexes for intermolecular energy transfer to the reaction centers and allows simultaneously sensitive regulation of light harvesting by only small changes in the protein packaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据