4.5 Article

Understanding the Binding Mechanism of Various Chiral SWCNTs and ssDNA: A Computational Study

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 116, 期 51, 页码 14754-14759

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp305894c

关键词

-

资金

  1. DST
  2. CSIR (Govt. of India)
  3. DST (Government of India)
  4. AOARD, US Air Force

向作者/读者索取更多资源

Molecular dynamics (MD) simulations have been carried out to understand the binding mechanism of various chiral single-walled carbon nanotubes (SWCNTs) and single-stranded DNA (ssDNA) of four different nucleobase sequences (i.e., ssdA(14), ssdT(14), ssdG(14), and ssdC(14), where, A, T, G, and C are adenine, thymine, guanine, and cytosine, respectively) in aqueous media at room temperature (300 K) and atmospheric pressure (1 atm). The simulations studies reveal that ssDNA undergoes rapid structural changes and wrap around the SWCNTs via pi-stacking interactions between SWCNT's wall and the nucleobases of ssDNA. Our computations demonstrate that the length of the ssDNA plays an important role during the wrapping process. Moreover, it suggests that the length of the sequence should be proportional to the diameter of the SWCNT, in order to overcome the intralocked pi-stacking interactions between the nucleobases of ssDNA sequence. Also, in our classical MD simulation, we do not observe the correlation between the diameter of SWCNTs and the sequences of ssDNA, which indicates the importance of electronic factors of these systems. In order to understand the electronic contributions of these systems, the quantum calculations have been performed at Hartree-Fock level for the 17 ns MD simulated structures. The quantum chemical calculations provide evidence that the highly stable ssDNA@SWCNT hybrid possesses a larger HOMO-LUMO gap.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据