4.5 Article

The Role of the Distal Histidine in H2O2 Activation and Heme Protection in both Peroxidase and Globin Functions

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 116, 期 40, 页码 12065-12077

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp300014b

关键词

-

资金

  1. Army Research Office [57861-LS]

向作者/读者索取更多资源

The distal histidine mutations of dehaloperoxidase-hemoglobin A (DHP A) to aspartate (H55D) and asparagine (H55N) have been prepared to study the role played by the distal histidine in both activation and protection against oxidation by radicals in heme proteins. The H55D and H55N mutants of DHP A have similar to 6-fold and similar to 11-fold lower peroxidase activities than wild type enzyme toward the oxidation of 2,4,6-trichlorophenol (TCP) to yield 2,6-dichloroquinone (DCQ) in the presence of H2O2. The origin of the lower rate constants may be the solvent-exposed conformations of distal D55 and N55, which would have the dual effect of destabilizing the binding of H2O2 to the heme iron, and of removing the acid-base catalyst necessary for the heterolytic O-O bond cleavage of heme-bound H2O2 (i.e., compound 0). The partial peroxidase activity of H55D can be explained if one considers that there are two conformations of the distal aspartate (open and closed) by analogy with the distal histidine. We hypothesize that the distal aspartate has an active conformation in the distal pocket (closed). Although the open form is observed in the low-temperature X-ray crystal structure of ferric H55D, the closed form is observed in the FTIR spectrum of the carbonmonoxy form of the H55D mutant. Consistent with this model, the H55D mutant also shows inhibition of TCP oxidation by 4-bromophenol (4-BP). Consistent with the protection hypothesis, compound ES, the tyrosyl radical-containing ferryl intermediate observed in WT DHP A, was not observed in H55D.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据