4.5 Article

Complete Solvation Response of Coumarin 153 in Ionic Liquids

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 117, 期 16, 页码 4291-4304

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp305430a

关键词

-

资金

  1. Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-FG02-09ER16118]
  2. Deutsche Forschungsgemeinschaft
  3. China Scholarship Council
  4. Humboldt Foundation

向作者/读者索取更多资源

The dynamic Stokes shift of coumarin 153, measured with a combination of broad-band fluorescence upconversion (80 fs resolution) and time-correlated single photon counting (to 20 ns), is used to determine the complete solvation response of 21 imidazolium, pyrrolidinium, and assorted other ionic liquids. The response functions so obtained show a clearly bimodal character consisting of a subpicosecond component, which accounts for 10-40% of the response, and a much slower component relaxing over a broad range of times. The times associated with the fast component correlate with ion mass, confirming its origins in inertial solvent motions. Consistent with many previous studies, the slower component is correlated to solvent viscosity, indicating that its origins lie in diffusive, structural reorganization of the solvent Comparisons of observed response functions to the predictions of a simple dielectric continuum model show that, as in dipolar solvents, solvation and dielectric relaxation involve closely related molecular dynamics. However, in contrast to dipolar solvents, dielectric continuum predictions systematically underestimate solvation times by factors of at least 2-4.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据