4.5 Article

How the Interplay between Mechanical and Nonmechanical Interactions Affects Multiple Kinesin Dynamics

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 116, 期 30, 页码 8846-8855

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp304018b

关键词

-

资金

  1. National Science Foundation [MCB-0643832]
  2. National Institute of Health [1R01GM094489-01]
  3. Welch Foundation [C-1559, C-1625]

向作者/读者索取更多资源

Intracellular transport is supported by enzymes called motor proteins that are often coupled to the same cargo and function collectively. Recent experiments and theoretical advances have been able to explain certain behaviors of multiple motor systems by elucidating how unequal load sharing between coupled motors changes how they bind, step, and detach. However, nonmechanical interactions are typically overlooked despite several studies suggesting that microtubule-bound kinesins interact locally via short-range nonmechanical potentials. This work develops a new stochastic model to explore how these types of interactions influence multiple kinesin functions in addition to mechanical coupling. Non-mechanical interactions are assumed to affect kinesin mechanochemistry only when the motors are separated by less than three microtubule lattice sites, and it is shown that relatively weak interaction energies (similar to 2 k(B)T) can have an appreciable influence over collective motor velocities and detachment rates. In agreement with optical trapping experiments on structurally defined kinesin complexes, the model predicts that these effects primarily occur when cargos are transported against loads exceeding single-kinesin stalling forces. Overall, these results highlight the interdependent nature of factors influencing collective motor functions, namely, that the way the bound configuration of a multiple motor system evolves under load determines how local nonmechanical interactions influence motor cooperation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据