4.7 Article

Dynamical transition in the temporal relaxation of stochastic processes under resetting

期刊

PHYSICAL REVIEW E
卷 91, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.91.052131

关键词

-

资金

  1. Indo-French Centre for the Promotion of Advanced Research [4604-3]

向作者/读者索取更多资源

A stochastic process, when subject to resetting to its initial condition at a constant rate, generically reaches a nonequilibrium steady state. We study analytically how the steady state is approached in time and find an unusual relaxation mechanism in these systems. We show that as time progresses an inner core region around the resetting point reaches the steady state, while the region outside the core is still transient. The boundaries of the core region grow with time as power laws at late times with new exponents. Alternatively, at a fixed spatial point, the system undergoes a dynamical transition from the transient to the steady state at a characteristic space-dependent timescale t*(x). We calculate analytically in several examples the large deviation function associated with this spatiotemporal fluctuation and show that, generically, it has a second-order discontinuity at a pair of critical points characterizing the edges of the inner core. These singularities act as separatrices between typical and atypical trajectories. Our results are verified in the numerical simulations of several models, such as simple diffusion and fluctuating one-dimensional interfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据