4.5 Article

Understanding the Role of Arginine as an Eluent in Affinity Chromatography via Molecular Computations

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 115, 期 11, 页码 2645-2654

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp111156z

关键词

-

资金

  1. Singapore-MIT Alliance

向作者/读者索取更多资源

Subatantial loss in yield can occur during the purification of antibodies, up to nearly half of the product. The first and the most critical step in the purification process is affinity chromatography, in which a ligand (protein A) is used to bind the antibody to a column, and eluents are then used to elute the bound antibodies. Arginine and citrate salt are two commonly used eluents for elution of antibodies. The role of eluents in protein A affinity chromatography in general, and the role of arginine and citrate in particular, are not well understood. Arginine and citrate both work well at low pH, but at high pH, arginine improves the recovery of antibodies much better than citrate, which gives negligible recovery. Milder elution conditions are desired because, at low pH, much product is lost due to aggregation. Via molecular computations, we gained insight into the mechanism by which arginine promotes the elution of antibodies. We show that arginine facilitates the dissociation of the antibody protein A complex and inhibits the aggregation of eluted antibodies, whereas citrate works in an opposite manner. These observations explain the low recovery of antibodies in the presence of citrate and improved performance in the presence of arginine. These results also shed light on the nature of molecular interactions between cosolutes and protein-protein binding sites that weaken or strengthen the binding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据